
1 
 

ECS 20 – Fall 2021 – Phillip Rogaway     Relations & Functions 
 
 
Def:  With  A and B sets, a relation R is subset of A × B  (or write X × Y ?) 

R  ⊆ A × B 
 

Usually we prefer to write things in infix notation, so  x R y  for (x,y) ∈ R. 
And usually we use symbols, rather than letters, for relations: e.g., ~ or <                     

x ~ y     if    (x, y) ∈ ~ 
 
Here are some common relations you know from arithmetic, for comparing 
numbers, where the underlying sets A=B are the sets of natural numbers, 
integers, or reals:  

=   <   ≤   >   ≥ 
 
Another important one for integers: 

| 
where d | a means that d divides a: there exists a number n such that n d = a. 
 
What about our friends:  succ (the successor function), +, *, ^  ?      
No, these are function symbols, not relations. 
 
In set theory we have the relation symbol 
           ∈    
 
What about  ∅ ?     
No, it’s a constant symbol. 
 
Often A = B is the same set. That is the case for all of the following 
examples. 
 

1. A = integers, ≤   
2. A = set of strings over some alphabet; x ≤ y  if is a substring of y 
3. A = set of lines in the plane;  x ~ y if they are parallel 
4. α and β are regular expressions;  α ~ β if L( α) = L( β) 
5. x and y are strings of the same length 
6. a and b are numbers and n>0 is a number and  a Rn b if n | (a-b)     
7. a and b are real numbers and a ~ b if   a  = b . 

 
 



2 
 

Equivalence relations – Are relations on X × X that enjoy three properties 
 
Reflexive:     x R x                                    for all x 
Symmetric:  x R y → y R x                      for all x, y 
Transitive:    x R y ∧ y R z → x R z         for all x, y, z 
 
 

Equivalence classes, quotients  
 
If R is an equivalence relation on A × A then [x] denotes the set of all 
elements related to x: 
 

[x]   =   {a:  a R x} 
 
We call [x] the equivalence class, or block, of x. 
 
Definition: The set of all equivalence classes of A with respect to a relation 
R is denoted A/R , which is read “the quotient set of A by R” or simply “A 
mod R”. 
 
I claim that every equivalence relation on a set partitions it into its blocks. 
 
What does this mean?  Let’s define a partition of the set A:   
 
Def:  {Ai: i ∈ I } is a partition of A if each Ai is nonempty set and (1) their 
union is A, A = ∪ Ai, but (2) their pairwise intersection is empty, Ai ∩ Aj = ∅ 
for all i ≠ j.  
 
Proposition: Let R be an equivalence relation on a set A. 
                     Then the blocks of R are a partition of A. 
 
Proof: -Every element x of A is in the claimed partition:  x ∈ [x], so the 
union of blocks covers A. 
            -Suppose that [x] and [y] intersect.  I need to argue that they are 
identical.  So suppose there exists a s.t. a ∈ [x] and a ∈ [y].  I must show that 
[x] = [y].   Let b ∈ [x]; must show b ∈ [y]. So given: 
a R x  (so x R a)              a R y         thus x R y, y R x 
b R x   (so x R b)      thus  y R b   (or b R y).       
 



3 
 

In fact, the  relation between equivalence relations and partitions goes both 
ways: 
 Given a partition {Ai: i ∈ I }  of  a set A, 
 define a relation R by asserting that x R y iff x and y are in the same 
block of the partition: there exists and i such that  x∈ Ai and  y ∈ Ai.   Then R 
is an equivalence relation [prove this]. 
 
Note:  you can talk about the blocks being related to one another by R, that 
is, [x] R [y] iff x R y.    This is well-defined. 
 

The circles are the points in the base 
set A. Two points are in the same block if they are related to one another 
under the equivalence relation.  
 
Now go back to prior examples and identify the blocks in each case.  
Eg: strings x and y are equivalent if they have the same length: the blocks 
are [ε], [a], [aa], …   Here, we are using a nice canonical name for each 
block.  It’s good to choose such canonical names.  
 
Another example: Consider the tiles we spoke of earlier in the course 
partition the plane (or the upper right quadrant) if you’re careful at the edges 
of each tile to make sure that each point is in only one tile. If you define 
  
 [a, b)  =  {x ∈ ℝ:  a  ≤  x < b) 
 
So a tile with left endpoint at (i , j) is [i, i+1) × [j, j+1) and the plane is the 
disjoint union of tiles 
   Ti j = [i, i+1) × [j, j+1)   when i, j ∈ ℕ} 
 
 
An important example in formal-language theory: let L be a language and 
define from it the relation RL by saying that    x RL y if for all z,   x z ∈ L  iff  
y z ∈ L.  
 



4 
 

Example: Figure out the blocks when L = {  x∈{a,b}*: |x| is even} 
 

Even-length
strings

Odd-length
strings

 
 
Example: Figure out the blocks when L = { x ∈{a,b}*: x starts with ‘aba’} 
 

a

ab

aba

b b
 

 
 
Theorem [Myhill-Nerode]: A language L is regular [you can represent it 
with a regular expression]   iff  L/ RL has a finite number of blocks. 
 
Back to: a and b are numbers and n>0 is a number and a Rn b if n | (a-b)      
 
Key example in computer science and mathematics. 
“Ring of integers modulo n.” 
Many ways to understand this “thing”. 
Ring of integers modulo n,   Zn 
Z/Rn     More common notation Z/nZ 

 

Lots of variant notations 
a = b        (a and b are point in Zn) 
a  ≡ b       (a and b are congruent mod n) 
a  ≡ b    (mod n) 
a mod n = b mod n      (now ‘mod’ is a binary operator) 
 
 
  



5 
 

Functions  
 
Definition:  A function f  is a relation on A × B such that there is one and only 
one (a, b) ∈ R  for every in a ∈A. 
 
When f is a function, we write b = f(a) to mean that (a,b) ∈ f. 
 
 
- We call A the domain of f,  Dom(f). 
- We call B the codomain of f. 
 
Sometimes the codomain is called the range. More common, however, is 
that that the range of f is the set {b ∈B: f(a)=b for some a in A} = f(A) = 
∪a∈A   {f(a)}.    A clearer term for this set is the target of f, or the = image of 
A under f.    (The image of a point x under f is f(x); a preimage of f(x) is x.) 
 
Example 1:     
Domain={1,2,3} 
 f(a) = a2. 
Dom(f) = {1,2,3}      f(A) = {1,4,9} 
The  co-domain: unclear – you have to specify it.  It  might be ℕ, might be 
ℝ, might be exactly the target.  
 
Example 2: 
Domain = students in this class, regarded as(month, day) pairs. 
b(x) = birthdays, encoded as {1,..,12} x {1..31}. 
 
b(phil) = (7,31) 
b(ellen) = (4,1) 
 
Example 3: 
 f: ℝ → ℝ defined by f(x) = x2 
I see lots of “ad hoc” notation.   Don’t.  
 
f: A → B.      f(a) = b.         If you’re writing crazy things f(x=a): b     I’m 
likely to give no credit. It’s like answering in a language you haven’t learned 
to speak when the first requirement of communicating is to be able to speak 
the language. 



6 
 

 
Sometimes you might want to show that f takes x to y,  a to 2a, etc.  Don’t 
use a → symbol for that; write   x ↦ y,   a ↦  2a.   With surrounding 
English, this reads ok.   But saying a  → 2a definitely does not. 
 
 
One-to-one and onto functions 
 
Def:    f : A →B  is injective (or one-to-one) if f(x)=f(y) implies x=y      “no 
collisions” 
 
Def:     f: A → B is surjective (or onto) if           ( ∀b ∈ B) (∃a ∈ A)  f(a)=b 
                                 “the codomain is the range” 
 
Def:  f: A → B is bijective if is injective and surjective. 
 
A function that is bijective from A to A is called a permutation. 
 
Func (A,B) = The set of all functions from A to  
 
Perm (A) = The set of all permutation on A 
 
Example:   

• f (n) = x2    
Ask if it’s 1-1 and onto if the domain/co-domain is ℤ 

 
 
Sometimes it can be tricky to see if a function is 1-1, onto: 
 

• f (x) = 3x mod 90    bijective 
• f (x) = 3x mod 91    not bijective  

 
 
Inverse of a function   
 
If f(x) = y we say that x is a preimage of y 
Does every point in the codomain have a preimage? 
      No, only points in the image. 
Does every point in the image have one preimage? 



7 
 

      No, only if it's an injective function 
Does every point the in the domain have an image? 
      Yes, that's required for being  a function. 
Might it have two images?  
      No, only one.  
 
If you do have a bijective function f: A → B  then the function f -1: B → A  is 
well defined:    f -1(y) is the unique x such that f(x) = y. 
 
Example:   f(x) = exp(x) = ex 
Draw picture. 
What's  the domain?  ℝ 
What's the range / image ? (0, ∞) 
Is it 1-1 on this image?        YES 
 
What's it's inverse?     y   ln(y) 
 
 
Some Counting Involving Functions 
 
 How many functions are there from 64 bits to 64 bits? 
 |Func({0,1}64,{0,1}64)| 
                                             64 264                                 270 
                                           2                       =   2 
 
How many permutations are there on 128 bits?  
                                            2128 ! 
 
 
How many on 8 bits? 
                                            256!   
 
 
Stirling’s formula is good for estimating such things: 

 
or  

 

http://www.artofproblemsolving.com/Forum/code.php?hash=22341972d49b9a3a22a4ef9220996604cf49ad12&sid=33111a8bd9a689ffade97e00b722339c


8 
 

or 

     

 
 
 
Let’s try to approximate: 
    How many functions are there on IEEE 64-bit floating points? 
 
Counting above gives 
 
                                             64 264                                 270 
                                           2                       =   2                            (Big-1) 
 
But, realistically, any program that computes a function on the IEEE floating 
point numbers is going to be described by a program of at most 1 TB in 
length. How many such programs are there? 
  
                                             8 240                                    243 
                                           2                       =   2                           (Big-0) 
 
This is an infinitesimal fraction of Bug-1.  To a pretty good approximation, 
virtually none of the programs we can imagine being computes from 64-bit 
values to 64-bit values are actually computable by a computer.   That’s kind 
of sobering, perhaps? 
 
Composition of functions 
 
Given a function f: A → B and a function g: B → C  we can form the 
function g ⚬ f  that consists of first applying f and then applying g: 
 

g ⚬ f  (x) = g( f( x )) 
 

(There are arguments for writing this f ⚬ g – we read left-to-right, after all, 
but then functions would be best written “operating on the left” instead of 
the more common convention of “operating on the right”: 
 

(x)  f ⚬ g = ((x) f ) g 



9 
 

 
This convention is common among algebraists, too. We’ll use the other 
notation.)  
 
Examples:   Compose the increment function inc(n) on the natural with the 
squaring function sqr() on the natural.     
 Compose the increment function with itself. 
 
Example: Let’s fix a number a and define two function on the naturals: 

D(n) = 2n          // to double a number 
A (n) = n + a    // to add the constant a to a number 
 

How could you compose these function to compute 
M(a, b) = a b      // the product of a and b 

 
Solution:  Let’s regard the bits of b as instructions that we read left-to-right.  
When we see a 0 it means “multiply the current value by two”. When we see 
a 1 it means “multiply the current value by two and then add a”. Start with a 
constant of 0. 

So if b = 1001101, say, and we want to multiply it by a, then we 
should compose the following sequence of operations (read from right-to-
left, as per our convention) and apply the result to 0: 

             A ⚬ D ⚬ D ⚬ A ⚬ D ⚬ A ⚬  D ⚬ D ⚬ D ⚬ A ⚬ D 
The add function itself can be regarded as a composition of operators 

drawn from A0, A1, A2, A3, .. where Ai adds 2i  to the number. So, for  
example, if a = 1101110  then A = A1 ⚬ A2 ⚬ A3 ⚬ A5 ⚬ A6. 
 
Example:  The function f maps  1  2, 2  3, and 3 1 .   
What is f ⚬ f ?       f ⚬ f  ⚬ f  ?    (These might be written f 2 and  f 3 , or sometimes 
f (2) and  f (3) .) 
 
Describe alternative notations: pair-of-vectors stacked horizontally or 
vertically; product of cycles.  
 
Permutations are the products of disjoint cycles. Explain.  Write 
permutations in alternative notation.  
 
Sn = all permutation on {1,2,…,n} = Perm({1,…,n}). The symmetric group on 
n letters (or numbers, or points). 

http://www.artofproblemsolving.com/Forum/code.php?hash=22341972d49b9a3a22a4ef9220996604cf49ad12&sid=33111a8bd9a689ffade97e00b722339c
http://www.artofproblemsolving.com/Forum/code.php?hash=22341972d49b9a3a22a4ef9220996604cf49ad12&sid=33111a8bd9a689ffade97e00b722339c
http://www.artofproblemsolving.com/Forum/code.php?hash=22341972d49b9a3a22a4ef9220996604cf49ad12&sid=33111a8bd9a689ffade97e00b722339c


10 
 

 
Proposition   Sn forms a group under composition. 
 
We have three properties to check.  Check them! 
 
 
Comparing the size of sets 
 
We can use the notions of injectivity and bijectivity to compare the sizes of 
sets, including infinite sets. 
 
Def:   Sets A and B are equicardinal if there exists a bijection f: A→ B.  We 
write |A| = |B|. 
 
Def:  Set B is at least as large as set A if there exists an injection f: A→ B.  We 
write |A| ≤ |B|. 
 
Proposition: Being equicardinal is an equivalence relation 
 
Show: 

1) |Evens| = | ℕ| 
2) | ℕ |  = |ℚ| 
3) | ℕ | ≠ | ℝ| 

 
 
Thm [Cantor-Schröder-Bernstein]   If |A| ≤ |B| and |B| ≤ |A|| then |A| = |B|. 
 
 
 
  
 
 


